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Abstract

The iterative closest point (ICP) algorithm is an efficient algorithm for robust rigid registration of 3D data. Results provided by the
algorithm are highly dependent upon the step of finding corresponding pairs between the two sets of 3D data before registration. In this
paper, a look up matrix is introduced in the point matching step to enhance the overall ICP performance. Convergence properties and
robustness are evaluated in the presence of Gaussian and impulsive noise, and under different data set sizes. The new algorithm has been
evaluated on 3D medical data. It has been applied successfully to register closed surfaces acquired using different medical imaging
modalities.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The registration of 3D data sets is an important task in
both Computer Vision and Photogrammetry, especially for
satellite and air photography, or in the medical field. A
detailed overview of image registration techniques can be
found in (Zitová and Flusser, 2003). Medical diagnosis
can be assisted using monomodal or multimodal image reg-
istration. In monomodal registration, data are obtained
from a single imaging technique. The main interest of this
mode is to highlight differences between the data registered:
evolution or remission of a disease, impact of a treatment
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doi:10.1016/j.patrec.2007.03.005

* Corresponding author. Tel.: +33 238 494 563; fax: +33 238 417 245.
E-mail addresses: Ahmad.Almhdie@univ-orleans.fr (A. Almhdie),

Christophe.Leger@univ-orleans.fr (C. Léger), mderiche@kfupm.edu.sa
(M. Deriche), Roger.Ledee@univ-orleans.fr (R. Lédée).

1 Tel.: +966 3 860 1523; fax: +966 3 860 3535.
on a patient over a period of time, comparison of medical
and reference data (atlas), etc. On the other hand, multi-
modal registration merges complementary information
obtained from at least two imaging modalities of the same
patient (Elsen et al., 1993). For example, (Kagadis et al.,
2002) present a comparative study of surface registration
of SPECT (single photon emission computed tomography)
images, which provide information about the functional
activities of an organ, and CT (computed tomography)
images, which offer organ anatomy description. In radiol-
ogy, medical image registration is a visualisation tool
which significantly facilitates the early detection of
tumours and other diseases, and helps to improve the diag-
nosis accuracy (Kneuaorek et al., 2000). Registration is
also used in functional analysis and surgical planning. It
is employed in surgery to carry out a precise planning in
order to prepare and/or simulate complex surgical proce-
dures (Sylvain, 2000; Ourselin, 2002). Another application
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of registration in the medical field consists in reconstructing
3D models (Kneuaorek et al., 2000; Matabosch et al.,
2005). It facilitates the acquisition of several views of the
body to be digitized, and can also assist the use of atlas
or normal or pathological data bases (Cuadra et al., 2004).

Different methods proposed for medical image registra-
tion have been discussed in (Maintz and Viergever, 1998;
Wan and Li, 2003), with some targeting medical surface
registration, such as in (Audette et al., 2000). Rigid surface
registration is used for the determination of correspon-
dence functions between different sets of structured 3D
data points representing the same surface. It gives the esti-
mation of motion parameters that bring the two surfaces
into alignment.

The iterative closest point (ICP) algorithm, originally
proposed by (Besl and McKay, 1992), is one of the most
popular methods used for estimating the rigid transforma-
tion of roughly aligned 3D data sets. It is widely used for
the rigid registration of surfaces (Akca, 2004; Liu, 2004)
when:

1. Dense data is assumed.
2. A good initial estimate is available.
3. Selected scene points from the scene surface have corre-

spondences in the reference surface.

The most important step of the ICP algorithm consists
in choosing corresponding (closest) points within the two
3D data sets. Since the accuracy of the search for corre-
spondence points affects the estimation of the transforma-
tion parameters for registration, the output of this step has
a major impact over the following stages, and influences
the overall performance of the algorithm. This step
depends upon both the selection of the points of the two
surfaces, and the method used for finding the correspon-
dence of the selected points. The Original ICP algorithm
(Besl and McKay, 1992), denoted OICP in this paper,
searches for the closest point in the reference surface for
each point in the scene surface without any restrictions.

Widespread interest in 3D surface registration using the
OICP algorithm has motivated the scientific community to
propose new techniques for enhancing the different steps of
the original algorithm. Many variants have been developed
to speed up the convergence and/or improve the perfor-
mance of the different phases of the algorithm. A good
review of these variants can be found in (Rusinkiewicz
and Levoy, 2001). There has been significant interest
regarding the selection of points used for the estimation
of transformation parameters. In (Chetverikov et al.,
2002), the Trimmed ICP improves both the rapidity and
the accuracy of the transformation parameter estimation
by selecting only a predefined number of estimated
matched pairs for the calculation of the ‘optimal motion’.
Additional features, such as curvature and moment invar-
iants, can also be used to improve the correspondence
search (Sharp et al., 2002; Bendels et al., 2004). However,
in this paper, no additional information is assumed to be
available for the correspondence search. The Picky ICP
(Zinsser et al., 2003) rejects all points previously estimated
to correspond to one reference point, except the one with
the smallest distance. This approach reduces convergence
problems that may arise using the original ICP algorithm,
when a common reference point is assigned to multiple
points in the scene surface. However, this affects the perfor-
mance of the algorithm negatively in noisy situations, since
many points are discarded in the estimation step.

Following (Rusinkiewicz and Levoy, 2001), different
ICP variants can be classified according to six different
criteria:

(1) Selecting subsets from the given 3D data sets.
(2) Finding correspondence points.
(3) Weighting the estimated correspondence pairs.
(4) Rejecting false matches.
(5) Assigning an error metric.
(6) Minimizing the error metric.

This paper focuses on the second part: the search for
pair correspondences from the two 3D surface data sets.
The aim is to enhance the performance of the correspon-
dence search step of the OICP algorithm. In order to have
a fair comparison, the OICP, PICP and CICP algorithms
presented here differ only by this second correspondence
search step. Here, we call PICP algorithm the OICP algo-
rithm used with the Picky ICP method for finding corre-
spondence points. The use of a new comprehensive look
up matrix is investigated and evaluated. The proposed
CICP (C for comprehensive) algorithm ensures unique
matches of correspondence pairs.

The paper is organized as follows. First, the original
OICP and PICP algorithms are summarized. The new
CICP algorithm is then described and details of the perfor-
mance analyses are given. In the following section, the per-
formance improvement of the CICP algorithm is evaluated
using medical data. The new version of the algorithm is
then used to register medical data from two different med-
ical imaging modalities. Finally some concluding remarks
are given.

2. Overview of the ICP algorithm

2.1. OICP overview

Let us assume that the given two surfaces to be regis-
tered can be described as point sets; the scene data points,
P, with Np points, {pi, i = 1, . . .,Np}, and the reference data
points, M, with Nm points, {mj, j = 1, . . .,Nm}. Depending
upon the sampling of the surfaces, Np is not necessarily
equal to Nm. Furthermore, the point pi of the scene surface
does not necessarily represent an exact 3D correspondence
to the point mi of the reference surface. However, the
search space is determined by the size of the scene data
set; i.e., Np. The OICP algorithm can be summarized as
follows:
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A. Initialization:
(1) Let the initial scene surface P0, be equal to P.
(2) Define the maximum number of iterations kmax.
(3) Initialize the translation vector and the rotation

matrix as follows:
T ¼

t1

t2

t3

2
664

3
775 and R ¼

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
664

3
775 ð1Þ

with the initial coefficient of the translation vector
and rotation matrix set as follows: tu = 0, ru,v = 0
if u 5 v, and ru,u = 1, u = 1,2,3, v = 1,2,3.
This corresponds to zero translation and no
rotation.
B. Iterations:
(1) For each point pi (i = 1, . . .,Np) of the scene P,

compute the closest point mj 2M from the model
using the Euclidian distance. Let m̂i be the point
on M corresponding to the minimum distance
to pi.

(2) Using the selected correspondence pairs, compute
the transformation, rotation (R) and translation
(T), that minimizes the mean square error
(MSE) of the estimated correspondence pairs:
MSE ¼ 1

Np

XNp

i¼1

m̂i � RðpiÞ � Tk k2
: ð2Þ

Different close-form solution techniques of the
original ICP algorithm can be used, i.e., quater-
nion (Horn, 1987; Mukundan, 2002) or single va-
lue decomposition (Arun et al., 1987).
The resulting transformation from the minimiza-
tion of the above equation at step k will be
denoted Rk and Tk. This step also provides the
minimum distances which correspond to the
matched pairs.
(3) Compute P = Rk · P0+Tk and restart a new iter-
ation if the change in the MSE is above a prede-
fined threshold f, and if the maximum number of
iterations kmax is not reached. If not, stop the iter-
ations and exit.
Table 1
The P–M distance matrix in which the Euclidian distance (di,j) between
each scene point (pi) and every model point (mj) is calculated

m1 m2 � � � mNm

p1 d1,1 d1,2 d1;Nm

p2 d2,1 d2,2 d2;Nm

..

.

pNp dNp ;1 dNp ;2 dNp ;Nm
2.2. PICP specifications

The PICP is similar to the OICP as it manipulates the
correspondence search vectorially. A method of rejecting
duplicate points is added to the first step of the OICP
algorithm:

(1a) For each point pi (i = 1, . . .,Np) of the scene P, com-
pute the closest point mj 2M from the model using
the Euclidian distance. Let m̂i be the point on M cor-
responding to the minimum distance to pi,
(1b) Among the resulting corresponding pairs, if more
than one scene point pi is assigned to the same model
point mj, then select pi that corresponds to the mini-
mum distance.
3. The proposed CICP algorithm

In previous variants of the OICP algorithm, the search
procedures for corresponding pairs of points are based
on a line-by-line (vector) search within a P–M distance
matrix described in Table 1, where di,j is the distance
between pi and mj. Duplicate matches may hence occur,
since multiple mj (columns) can be assigned to different pi

(lines). The PICP variant ensures unique matches by reject-
ing all duplicate pairs, except the one with the smallest dis-
tance. This can be described as a line-by-line followed by a
column-by-column search within the P–M distance matrix.
Unfortunately, this may lead to the exclusion of good
markers from the estimation procedure. To overcome this
drawback, a more comprehensive search is needed.

A novel effective evaluation metric is introduced for cor-
respondence search, called comprehensive lookup matrix
measure. This measure ensures that every selected point
on the scene surface has a unique match in the reference
surface.

The CICP is different in that it sorts the di,j distances in
ascending order within the entire P–M distance matrix.
Moreover, the point mj is not considered to be a correspon-
dence to pi if either mj or pi has been previously assigned a
correspondence. This ensures that each point in the scene
surface will have a different association in the reference
surface.

The CICP is the only ICP algorithm that makes use of
all scene points in the search procedure to find the best
and unique correspondence pairs. In other words, the P–
M distance matrix is introduced to comply with the fact
that a rotation is a bijective (one to one) function. Previous
ICP implementations are based on vector not matrix ana-
lysis of the assignment problems. In this case, some ele-
ments in M may be mapped by more than one element in
P, yielding surjection correspondences and incorrect esti-
mations of rotation parameters. When the number of
points in the two sets to be registered is not the same, the
CICP algorithm considers the one with a smaller number
of points as a scene data set to ensure bijectivity of the
resulting correspondence pairs. To reduce the computation
time introduced by the matrix search procedure, matrix to
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vector conversion or fast assignment algorithms are used.
The CICP algorithm replaces step 1 of the OICP algorithm
by:

(1) For each point pi 2 P, (i = 1, . . .,Np), the algorithm
computes the Euclidian distance di,j to each point
mj 2M, (j = 1, . . .,Nm). Then, for Np times, the
algorithm:
a. looks for the location (i, j) that corresponds to the

minimum distance di,j in the current look up
matrix,

b. assigns pi to mj as a correspondence pair,
c. removes this correspondence pair from future

consideration by eliminating the ith row and jth
column.
Instead of leaving the decision of rejecting worse pairs
till the end of each iteration as in (Zinsser et al., 2003),
the CICP algorithm makes such a decision at the end of
every selection of correspondence pairs. In addition to
improving the rotation parameters estimation, such an
approach improves the accuracy and the convergence of
the ICP algorithms, as shown in the following sections.
4. Estimation of transformation parameters using quaternion

For comparison reasons, the method presented in the
OICP algorithm (Besl and McKay, 1992) for the estimation
of the transformation parameters is used for the other two
candidates. Following this method, rotation is expressed by
a unit quaternion,~qR ¼ q0 q1 q2 q3½ �t, and translation
is expressed by a vector~qT ¼ q4 q5 q6½ �t. A rigid trans-
formation can then be constructed by the two vectors:
~q ¼ ½~qRj~qT �t which is no longer a quaternion but a vector
in R7.

Assuming that M̂k is the rearranged reference data set
obtained from the closest point research step:

– both Pk and M̂k data sets have the same number of
points (Np),

– point correspondences are known, which means that for
each iteration i, the point pi corresponds to point m̂i of
the iteration k.

The anti-symmetric matrix is then formulated using the
cross covariance matrix R(k) of the Pk and M̂k:

AðkÞ ¼ RðkÞ � RðkÞ
t

; ð3Þ

where RðkÞ ¼ 1
Np

PNp

i¼1½ðpi � lpÞðm̂i � lm̂Þ
t�, lp and lm̂ repre-

sent the center of mass of the scene data set Pk and the cor-
responding reference data set M̂k.

The elements of the anti-symmetric matrix are then used
to construct the following matrix:

Qk ¼
trðRkÞ Dt

D Rk þ Rt
k � trðRkÞI3

" #
; ð4Þ
where D ¼ A23 A31 A12½ �t, Auv is the uth, vth element of
matrix A, and I3 is a 3 · 3 identity matrix.

The optimal rotation is hence determined by calculating
the eigenvector qTrk ¼ q0 q1 q2 q3½ �t that corresponds
to the maximum eigenvalue of the matrix Qk. The rotation
matrix can then be formulated as follows:

Trk ¼
q2

0þq2
1�q2

2�q2
3 2ðq1q2�q0q3Þ 2ðq1q3þq0q2Þ

2ðq1q2þq0q3Þ q2
0þq2

1�q2
2�q2

3 2ðq2q3�q0q1Þ
2ðq1q3�q0q2Þ 2ðq2q3þq0q1Þ q2

0þq2
1�q2

2�q2
3

2
64

3
75:
ð5Þ

Finally, the optimal translation vector is calculated based
on the obtained optimal rotation:

qTtk ¼ lm̂ � TrðqTrkÞlp: ð6Þ
5. Performance analysis

In this paper, the new CICP algorithm will be compared
to the OICP and PICP. The PICP algorithm has been
chosen as a benchmark since it is the only algorithm that
addresses point to point assignment (bijectivity) by discard-
ing duplicate matching points. The robustness of the CICP
algorithm will be studied under the presence of noise, with
both synthetic and real medical data.

5.1. Noise generation

Real data are usually corrupted by noise caused by a
wide range of sources, e.g. detector variations, environmen-
tal variations, transmission or quantization errors, etc.
Here, the performance of the selected ICP algorithms is
investigated under the effect of Gaussian and impulsive
noise. In order to test the performance of the different algo-
rithms in terms of estimating transformation parameters
for the registration of surfaces affected by noise, noise is
added to the scene data and then a known transformation
(to be recovered) is applied.

5.1.1. Gaussian noise

Gaussian noise is added to the original data by the fol-
lowing method:

(1) Transform all points of the data set from Cartesian to
spherical coordinates (notations are shown in Fig. 1):
piðx; y; zÞ ! qiðh;uÞ 8i ¼ f1; . . . ;Npg: ð7Þ
The transformation can be carried out without over
determination for star-like shape closed surfaces
where every radius launched from the origin crosses
the surface in only one point. This is the case for med-
ical closed surfaces used here for validation, as indi-
cated on Fig. 1.

(2) Add noise to each resulting qi "i = {1, . . .,Np}:
qi ¼ qi þ jqi � lqj � 10�SNR dB=20 � randð:Þ ð8Þ
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Fig. 1. Cartesian to spherical coordinates transformation of star-like
shape closed surfaces.
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where lq ¼ 1
Np

PNp

i¼1qi, rand(.) is a random Gaussian
number generator with mean zero and variance one,
and SNR_dB is the required signal to noise ratio in
dB.

(3) Transform points back to Cartesian coordinates.
5.1.2. Impulsive noise
Impulsive noise is commonly referred to as outliers. In

this case, a set of h% of the data points is assumed to be
corrupted by impulsive noise. To generate outliers, replace
step 2 of Gaussian noise generation by:

(2a) Randomly selecting h% of the total data points.
(2b) Modifying each selected point: qj "j = {1, . . .,Np ·

h/100}
qj ¼ qj � ð1þ bÞ ð9Þ
where b represents the distribution of the outliers
relative to the points of the original data set.
5.2. Performance parameters

To compare the performance characteristics of the CICP
algorithm to OICP and PICP algorithms, three parameters
are taken into consideration: the mean square error (MSE)
between the registered data sets, the percentage of correct
matches and the influence of differently sampled meshes.
5.2.1. Mean square error

The convergence property of the algorithm can be esti-
mated by computing the mean square error (MSE) between
the reference and the registered data sets, at each iteration
of the algorithm. Since the orientation is usually not known
for both registered surfaces, the MSE can be computed by
moving from Cartesian to spherical coordinates. When ele-
ments of the resulting 2D mesh have no data because of the
resampling introduced by the Cartesian to spherical coor-
dinates conversion, surface completion methods are
applied to estimate the missing data (for example the
method previously proposed by (Almhdie et al., 2004)).

In this paper, the MSE is considered as an error metric.
It is computed as the mean square difference between the
corresponding elements of the resulting 2D regular meshes
obtained after conversion to spherical coordinates of the
two reference and scene closed surfaces. This choice is
imposed by the medical application that usually tends to
minimize the distance between the two registered surfaces.
Whereas the CICP calculates global MSEs, i.e, mean
square error between the two surface data sets, the OICP
and PICP calculate local MSEs, i.e., mean square error
between estimated corresponding points. Therefore, mak-
ing comparisons based on local MSE (Zinsser et al.,
2003) is not valid since not all the points are always taken
into consideration.

5.2.2. Percentage of correct matches

Correct matches analysis can be carried out only when
the exact orientation of the two data sets to be registered
is known, e.g. for validation purposes using simulated or
known data. Under such a hypothesis, the percentage of
correct associations of corresponding points from the scene
and reference surfaces is counted at each step of the algo-
rithm. Since each pi 2 P is a transformed point of mj 2M,
then an association is defined as ‘‘correct’’ when j = i, that
is to say mi ¼ m̂i is assigned to pi. This measurement is a
straightforward indicator of the performance of the corre-
spondence pair search method, as it reflects the quality of
the correspondence pair estimation.

5.2.3. Influence of differently sampled meshes

In many classical situations, the size of the measured
data (scene) and the size of the model data (reference) are
different. Situations where the scene data are composed
of a subset of the reference data are tested here to evaluate
the influence of sampled meshes of different sizes on the
performance of the three ICP algorithms. The perfor-
mances are compared by considering the number of itera-
tions needed for the three ICP algorithms to converge.

6. CICP algorithm evaluation

The CICP algorithm was tested under a noise-free situ-
ation as well as with Gaussian noise (with SNR of 10 dB
and 20 dB) and outliers (with percentage of outliers of
10%, 15% or 20 % of the data set) conditions. The conver-
gence properties and the accuracy of the proposed CICP
algorithm have been evaluated using a real medical data
set, since it is hard to find standard test data in the litera-
ture to compare performances of methods.

6.1. Material

The experiment considers a set of 922 points of real data
of a human left lung as a reference surface (Fig. 2a). The set
of points is obtained from medical images acquired by



Fig. 2. Left lung data. (a) Reference surface, (b) scene surface (rotation �29�, �4� and 8� around the x-axis, y-axis and z-axis, respectively, noise free),
(c) scene surface (rotation, 10 dB Gaussian noise) and (d) scene surface (rotation, 5% outliers).
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perfusion scintigraphy, and is then transferred to a console
for segmentation. The scene data set is simulated by rotat-
ing arbitrarily the reference scene data. The rotation was
limited to 30� around the three main axes since the ICP
algorithm is designed to refine rotation estimations of
roughly registered data sets (for example, after computing
the main inertia directions of each pair of data sets). In this
experiment, results are chosen using a rotation of �29�,
�4� and +8� around the x-axis, y-axis and z-axis, respec-
tively (Fig. 2b). To evaluate the repeatability of the results
obtained using the left lung scene data, thirty other ran-
domly selected rotations were applied on the reference
data; the results obtained were equivalent to those pre-
sented below. The three OICP, PICP and CICP algorithms
were tested to register the reference surface (Fig. 2a) with
the scene surface (Fig. 2b), corrupted with Gaussian
(Fig. 2c) and outlier noise (Fig. 2d). In order to compare
the convergence and stability of the algorithms, here, the
MSE threshold does not stop the iterative procedure and
the maximum number of iterations is set to 100. The num-
ber of points in the reference and scene data sets is equal.
6.2. Gaussian noise influence

The MSE between the reference and registered surfaces
is measured at each iteration of the OICP, PICP and CICP
algorithms, considering scene surface (Fig. 2b) degraded
with Gaussian noise (Fig. 2c). In all the Gaussian noise
tests, the MSE0 value represents the mean square error
between the reference surface and the scene surface prior
to applying the known transformation that will be esti-
mated using the registration procedure. It is used as a per-
formance indicator of the comparison. Table 2 presents
some numerical results of the performance of the three
algorithms at convergence. The first row of the table indi-
cates the number of iterations reached at convergence,
i.e., when the MSE error between the two registered sur-
faces becomes stable. The second row presents the percent-
Table 2
Performance results at convergence (left lung data, Gaussian noise)

SNR = 10 dB SNR

CICP PICP OICP CIC

Max. # of iterations 16 32 23 15
% of correct matches 90.8 84.2 85.5 99.3
Computation time (s) 35.9 28.1 24.2 33.2
age of points of the scene and reference surfaces that match
correctly at convergence. Finally, the last row gives the
computation time (expressed in seconds) needed to reach
convergence. Numerical results are provided for values of
SNR set respectively to 10 and 20 dB (columns 2 and 3),
and for noise free data (column 4). For each noise situa-
tion, the values obtained with the CICP, PICP and OICP
algorithms are provided.

Table 2 shows that the CICP algorithm converges faster
in terms of number of iterations, even though the search
procedure is more complex for the CICP than for the OICP
and PICP algorithms. Due to the complexity of the search
procedure, the duration of one iteration is longer for the
CICP algorithm than for the other ones. Nevertheless, the
reduction in the number of iterations yields a global compu-
tation time of the same order for the CICP algorithm.
6.2.1. MSE comparison

Fig. 3 shows the evolution of the mean square error
computed at the end of each iteration of the OICP, PICP
and CICP algorithms. In this figure, the horizontal lines
represent the MSE values (for SNR of 10 dB and 20 dB
and noise free situations) between the two data sets before
applying the transformations whose parameters are esti-
mated by the three variants of the ICP registration algo-
rithm. Under a noise free situation, the CICP algorithm
approaches the pre-known MSE0 in a fewer number of iter-
ations, compared to the OICP and PICP algorithms. Sim-
ilar results are obtained for 10 and 20 dB amounts of
Gaussian noise on the scene data. In all scenarios, although
the search of correspondence points within the CICP is
computationally expensive, it needs a much lower number
of iterations to converge. In addition, the CICP approaches
the MSE0 closer than the OICP and PICP algorithms. At
SNR of 10 dB, we note that the CICP algorithm gives a
better approximation to the mean square error between
the two data sets before and after registration. The OICP
and PICP algorithms, however, give lower MSE values at
= 20 dB Noise free

P PICP OICP CICP PICP OICP

28 22 15 26 21
99.2 99.5 100 100 100
25 23 25.5 16.5 16.7



Fig. 3. Left lung data registration, convergence comparison in the case of
Gaussian noise. Solid horizontal lines represent MSE0 values.
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the end of the iterative process. This situation which could
seem profitable at first approximation, corresponds to a
particular configuration of the noise on the original data.

6.2.2. Correct matches evaluation

Fig. 4 shows the percentage of correct matches at each
iteration of the OICP, PICP and CICP algorithms. It can
be seen that the CICP gives the highest number of correct
matches, in fewer iterations, compared to both OICP and
PICP algorithms, for the Gaussian noise situation tests
undertaken. As the signal to noise ratio decreases, this
superiority in achieving more correct matches becomes
even clearer.

6.2.3. Influence of differently sampled meshes

To test the behavior of the algorithms when the refer-
ence and scene surfaces contain a different number of
points, the scene data are constructed as a partial set of
Fig. 4. Left lung data registration, accuracy performance with 10 and
20 dB Gaussian noise addition.
the reference left lung data, selecting randomly from 70%
to 100% of the reference data. The scene data are assumed
to have been degraded by a Gaussian noise of SNR of
10 dB. Fig. 5 shows that the CICP always converges faster
than the other two algorithms in terms of number of itera-
tions. As the PICP algorithm uses only the correspondence
search part of the Picky ICP, the results presented here do
not reflect the performance of the complete version of the
Picky ICP, which is assumed to perform better than the
OICP algorithm. However, the partial version of the Picky
ICP has been used for comparison since it is known as a
method that addresses duplicate assignment problems.

6.3. Impulsive noise influence

This section presents results for the case of scene data
corrupted with impulsive noise. Table 3, constructed simi-
larly to Table 2, reports the numerical results of the OICP,
PICP and CICP algorithms when convergence is reached.

6.3.1. MSE comparison

Fig. 6 presents the convergence property of the three
algorithms in the presence of outliers. The CICP shows a
good resilience to outliers even without adding a point
rejection mechanism as introduced with the PICP algo-
rithm. As with the results obtained with Gaussian noise,
the CICP algorithm reaches convergence in fewer iterations
than the other algorithms evaluated. It also approaches
closer the pre-known MSE0. This result indicates that the
error between the two registered surfaces at the final stage
is reduced with the new CICP algorithm.

6.3.2. Correct matches evaluation

The results presented in Fig. 7 for the case of impulsive
noise show the superiority of the CICP algorithm in finding
higher correct associations of corresponding points of the
Fig. 5. Left lung data. Number of iterations at convergence stage as a
function of the rate of the scene data set number of points over the
reference data set number of points (considering data corrupted with
10 dB Gaussian noise).



Table 3
Performance results at convergence (left lung data, impulsive noise)

Outliers = 10% Outliers = 15% Outliers = 20%

CICP PICP OICP CICP PICP OICP CICP PICP OICP

Max. # of iterations 17 29 22 16 30 23 17 31 21
% of correct matches 96.5 92.6 92.8 95 89.2 89.8 91.4 84.1 85.2
Computation time (s) 26.5 16.6 14.3 24.9 17.2 15 26.7 17.5 13.7

Fig. 6. Left lung data registration, convergence comparison in the case of
impulsive noise. Solid horizontal lines represent the MSE0 value.

Fig. 7. Left lung data registration, accuracy performance in the case of
impulsive noise.

Fig. 8. Left lung data. Number of iterations at convergence stage as a
function of the rate of the scene data set number of points over the
reference data set number of points (considering data corrupted with 20%
of outliers).
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scene and reference surfaces. One can note that the number
of correct matches found with the CICP algorithm in the
case of 15% of outliers is greater than the number of cor-
rect matches obtained with the PICP and OICP algorithms
in the case of only 10% of outliers.
6.3.3. Influence of different sampled meshes

The results presented in Fig. 8 are related to situations
where the number of scene data points (corrupted by
20% of impulsive noise) is reduced compared to the num-
ber of reference data points. The CICP algorithm needs
fewer iterations than the other two algorithms to reach
convergence. This is observed whatever the percentage
(between 70% and 100%) of the number of points of the
reference data set used to build the scene data set. In com-
parison with the OICP algorithm, the reduction factor in
terms of number of iterations oscillates from 1.4 to 1.8.
7. Multimodal medical data registration

Two experiments are reported in this section. The first
one considers the registration of the left lung surface pre-
sented previously with a reference atlas of the left lung.
The second test consists in registering two sequences of
eight surfaces of the left ventricle of the heart, acquired
from two different medical imaging modalities.
7.1. Left lung surface to reference atlas

In this experiment, the scene surface corresponds to the
real left lung data shown in Fig. 2a. The reference surface is
a lung atlas obtained by segmenting manually under physi-
cian supervision the left lung of data provided by the Vis-
ible Human Project (creation of complete, anatomically
detailed, three-dimensional representations of a male
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human body from transverse CT images of one millimeter
intervals). The atlas data set consists of 1150 points, com-
pared to the scene left lung data composed of 922 points.
The motion parameters that ‘‘best’’ align the lung data
set with the atlas are estimated using the three OICP, PICP
and CICP algorithms. The corresponding registered data
are displayed in Fig. 9.

For the experiment carried out, the MSE threshold f
between the reference surface and the registered scene sur-
face is set to a low value (10�3), and the maximum number
of iterations (kmax) is not limited. This ensures that the esti-
mation of the motion parameters is reached. The algorithm
stops when the estimated motion parameters are constant
within several iterations. With lung atlas and lung data,
the CICP, PICP and OICP algorithms achieve convergence
in 31, 135 and 84 iterations, respectively, and the elapsed
time is 72.9, 127.2 and 93.4, respectively. In this case, even
though the computation time per iteration is higher for the
CICP algorithm, the reduction in the number of iterations
yields a global reduced computation time compared to the
OICP and PICP algorithms.

In Fig. 9, after stability of transformation parameters is
reached, the CICP algorithm (Fig. 9d) gives a better regis-
tration of the two data surfaces (Fig. 9a), compared to the
OICP (Fig. 9b) and PICP (Fig. 9c) algorithms. This quali-
Fig. 9. Initial views: lung atlas (reference surface, black) and lung data (sc
algorithms. (For interpretation of this figure in colour, the reader is referred t

Fig. 10. Registration of two sequences of eight LV surfaces acquired from Nuc
surfaces (reference data). (b): Ultrasound imaging LV surfaces before registra
tative result was confirmed by a physician, expert in the
field of medical imaging. Further experiments will be con-
ducted to quantify these preliminary results precisely.

7.2. Sequences of the left ventricle of the heart

In this experiment, data consist of two sequences of
eight surfaces of the left ventricle (LV) of the heart recon-
structed within a cardiac cycle. Examinations were carried
out on the same patient using successively two medical
imaging modalities within a short period of time, in order
to assume the LV deformations to be reproducible and
hence medical comparisons applicable. The first sequence
is composed of eight LV surfaces obtained after automatic
segmentation from nuclear medicine imaging (NMI),
known to be a ‘‘gold standard’’ examination for cardiac
observation (Fig. 10a). The second LV sequence is pro-
vided by a new multidimensional ultrasound technique
(US) called LV4D for Left Ventricle in 4 Dimensions (Bon-
ciu et al., 2001) (Fig. 10b). The objective is to use the NMI
examination to validate the new ultrasound method. The
evolution of the NMI and US LV volumes as a function
of time provides a global comparison of the reconstructed
surfaces, as shown in Fig. 11. Such figures have been
used previously to compare globally the LV surfaces
ene surface, red). Registered data using (b) OICP, (c) PICP, (d) CICP
o the web version of this article.)

lear Medicine and Ultrasound imaging. (a): Nuclear Medicine Imaging LV
tion (scene data). (c): Ultrasound imaging LV surfaces after registration.



Fig. 11. Global comparison of NMI and US left ventricular volumes,
delineated by the closed surfaces shown in Fig. 10a and b, within a cardiac
cycle.
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reconstructed using the two modalities. Experiments were
carried out with data obtained on a patient with a pace-
maker (Debrun et al., 1999) and on a mechanical phantom
(Debrun et al., 2005), in order to ensure heart beat regular-
ity and volume deformation reproducibility. However, the
lack of registration does not allow local comparisons, since
the two surface absolute orientations are not known.

Even though the patient relative orientation varies inev-
itably between NMI and US examinations, it is reasonable
to consider that it remains the same relative to an absolute
reference system of coordinates during each examination.
Thus, the transformation parameters to be estimated are
expected to be equivalent for all registered pairs of the cor-
responding surfaces. Differences in parameter values may
occur because of the noise level that alters data, usually
with a significant ratio in medical imaging (due for example
to the resolution of the imaging techniques, the quality of
the segmentation algorithms that produce surfaces, etc.).

Table 4 indicates the (a,b,c) Euler angle values (columns
2–9), estimated using the CICP algorithm with the eight
NMI and US LV volumes shown in Fig. 10a and b. The
last two columns (10 and 11) give the mean and standard
deviation of the eight corresponding angle estimations.
The results obtained for each pair of surfaces are globally
coherent, except for the c Euler angle.

a and b angles are evaluated correctly (la = 20.4,
ra = 3.0, lb = 6.8, rb = 6.3, respectively) since estimating
the rotation angles around the X and Y axes is relatively
straightforward for LV shapes (refer to Fig. 1 for nota-
Table 4
The estimated Euler angles used as rotation parameters for the registration of
modalities

Volume # 1 2 3 4

a 20.7 17.9 21.7 16.2
b 10.2 20.2 6.9 2.0
c �23.2 47.3 �11.5 �8.3
tions). On the contrary, the c angle is found with a high
degree of incertitude (lc = 2.0, rc = 21.0), yielding non-sig-
nificant c estimations without further study. This result is
due to the shape of the LV, usually modeled by a semi-
ellipsoid or a bullet, which presents a rotational symmetry
around the Z axis and gives undefined c angle values. Some
shape discontinuities (observed for pathological cases such
as ischemia, left ventricle shape irregularities, local defor-
mations due to the right ventricle influence, overdeveloped
papillary muscles, etc.) might be helpful in estimating the c
angle. Moreover, signal-post processing can be applied on
the available c angle values in order to refine coarse estima-
tions. In this case, more than eight different c estimations
would certainly be a prerequisite.

8. Concluding remarks

In this work, a novel enhanced implementation of the
ICP algorithm is presented. The use of the complete
look-up distance matrix during the point association proce-
dure guarantees that unique matches are obtained for all
points from the scene data. The substitution of a vector
by a matrix based search of correspondence pairs ensures
correct transformation parameter estimation used for rigid
registration, in agreement with the bijective property of the
rotation. Compared to other ICP implementations, the
proposed CICP algorithm provides: a faster convergence,
in terms of number of iterations, a more precise estimation
of pair of points correspondence, and a better resilience to
additive Gaussian noise and outliers. Even though all
experiments carried out with the CICP show better conver-
gence and stability than the other OICP and PICP refer-
ence algorithms, theoretical demonstration still remains
to be developed. In addition to minimizing the number of
ICP iterations, the computing time expansion due to the
switch from vector to matrix search is limited. Improve-
ments in computation time reduction are currently being
investigated using valuable techniques known to solve
assignment problems: LMedS (least median of squares)
estimator (Masuda and Yokoya, 1994), M-estimator
(Trucco et al., 1999) and Minmax estimation (Jaulin and
Walter, 2002). The accuracy of the proposed CICP has
been investigated and promising results have been shown
for 3D real medical data registration. This step is part of
a more general research work aimed at comparing locally
and validating quantitatively surfaces of star-like shape
organs, reconstructed from different medical imaging
modalities.
left ventricular surfaces reconstructed using NMI and US medical imaging

5 6 7 8 l r

21.1 25.4 17.7 22.4 20.4 3.0
1.1 0.9 7.0 6.5 6.8 6.3
2.1 11.9 �2.2 0.2 2.0 21.0
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