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ABSTRACT 
 

This paper describes a modelling method for continuous closed contours. The initial input 

data set consists of 2D points, which may be represented as a discrete function in a polar co–

ordinate system. The method uses the Shannon interpolation between these data points to obtain the 

global continuous contour model. A minimal description of the contour is obtained using the link 

between the Shannon interpolation kernel and the Fourier series of polar development [FSPD] for 

periodic functions. The Shannon interpolation kernel allows the direct interpretation of the contour 

smoothness in terms of both samples and Fourier frequency domains. 

 

In order to deal with deformation point sources, often encountered in active modelling 

techniques, a method of local deformation is proposed. Each local deformation is performed in an 

angular sector centred on the deformation point source. All the neighbouring characteristic samples 

are displaced in order to minimise the oscillations of the newly created model outside the 

deformation sector. This deformation technique preserves the frequency characteristics of the 

contour, regardless of the number and the intensity of deformation sources. In this way, the 

technique induces a frequency modelling constraint, which may be subsequently used in an active 

detection and modelling environment. 

 

Experiments on synthetic and real data prove the efficiency of the proposed technique. The 

method is currently used to model contours of the left ventricle of the heart obtained from 

ultrasound apical images. This work is part of a larger project, the aim of which is to analyse the 

space and time deformations of the left ventricle. The 2D Fourier–Shannon model is used as a basis 
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for more complex 3D and 4D Fourier models, able to recover automatically the movement and 

deformation of left ventricle of the heart during a cardiac cycle. 

 

KEY WORDS: 2D deformable model − Shannon interpolation − Fourier–Shannon modelling − 

Fourier filtering − Ultrasound imaging 

 

1. INTRODUCTION 

The currently available automatic segmentation algorithms are not sufficiently powerful for 

many image classes. This is frequently the case in ultrasound imaging of the heart. For example, it 

is often necessary to locate the endocardic wall of the left ventricle in an apical cross section 

(Figure 1). The ultrasound echo may be lost in noise when the ultrasound beam is parallel with the 

ventricle boundary. Moreover, the ultrasound echo reveals virtual boundaries at the mytral valves 

level in several instances of the cardiac cycle. In these cases, only an experienced operator is able to 

locate the contour of the left ventricle. The expert interpolates the endocardic contour in those areas 

where it is indistinguishable, relying on his knowledge of the morphology of the ventricular cavity, 

especially of its overall shape. Despite recent progresses reported in the literature [1]−[12], there is 

no general method for automatic boundary detection that provides satisfactory results in these cases. 

Most of the detection methods use specific a priori information about the characteristics of the 

target contours to solve the detection problem. The a priori information is also essential when the 

aim is to track motion within a sequence [11], particularly in order to obtain a three–dimensional 

(3D) reconstruction of objects using these contours [13]−[21]. 

 

In this paper, we propose a deformable 2D model that includes a priori information about 

the detected contour shapes. The information is expressed by the number of Fourier coefficients 

retained from the Fourier series of polar development [FSPD] of the contour samples. The 

modelling technique is valid for contours, which have an inner origin from which every radius 

crosses the contour in only one point. The model is based on the FSPD of the contour samples, 

which depends on the associated development origin. This origin (named central origin) is defined 

as the centre of the largest circle that approximates the contour by the least–squares method. The 

parameters of the model are the central origin co–ordinates and the Fourier coefficients of its polar 

development around this origin. A continuous contour is deduced from the model, using circular 

Shannon interpolation between the samples. The Shannon interpolation is optimal in the frequency 

domain [22]. Specifically, the Shannon interpolation provides the minimal frequency description in 
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terms of number of Fourier coefficients. In this context, the number of the Fourier coefficients 

directly defines the smoothness of the contour model.  

 

The Fourier–Shannon technique provides an efficient way to deal with both discrete and 

continuous contours. This is a significant advantage when the modelled contours are used in 

subsequent 3D and 4D models. In this case, the continuous contour must be sampled following 

external geometrical constraints. Conversely, the image is usually considered a discrete map, and an 

active model is more conveniently expressed during deformation using a finite set of characteristic 

samples.  

 

The Fourier–Shannon approach gives a global contour model. In order to deal with the 

active modelling environment, a deformation technique is proposed, which assumes that the image 

matching information is performed locally and gradually. The deformation technique restricts the 

spatial deformation to an angular segment centred on the deformation source, while preserving the 

harmonic complexity of the modelled contour during the deformation process.  

 

The first step of the modelling process selects the number of parameters of the model, using 

a representative set of reference contours. If necessary, the initial data points are locally smoothed 

and interpolated in order to obtain a closed continuous contour. Then, the number of the modelling 

parameters is chosen to give the maximum degree of global smoothing (which corresponds to a 

minimal description model) constrained by a modelling error tolerance threshold. We use an under–

sampling iterative procedure, which measures the sampling error between two successive contour 

models, obtained with different number of samples. Thus, this step provides a primary model, with 

the smoothness fixed by the number of the FDSP coefficients. 

 

This modelling step is performed using a representative selection of images, considering 

specific target reference contours. The choice of the number of parameters for the model is an 

important modelling issue. The proposed technique is sufficiently general to cope with the diversity 

of geometrical shapes that the modelling context may reveal during an automatic detection 

procedure. The use of this Fourier–Shannon model eliminates any direct geometrical restriction that 

may be contradictory with the (unknown) shape of a detected contour from the same class.  

 

The second step consists in adjusting the values of the Fourier coefficients following an 

external deformation source, within angular sectors. The deformation process starts with an 

imposed deformation source, given by the image information detection procedure (a human expert 



 4

or a features detection algorithm). This deformation is propagated to the neighbouring samples of 

the actual contour, in the angular sector centred on the initial deformed sample. The propagation 

law is designed to minimise the model contour oscillation outside the deformation sector, keeping 

the same harmonic complexity for the deformed contour. In this way, the continuous contour 

remains consistent with the initial frequency model after deformation.  

 

The neighbouring samples are moved radially, within the defined sector. The oscillations 

outside the sector are the effect of the specific harmonic constraint expressed implicitly by the 

Shannon interpolation kernel. By imposing a maximum amplitude for these oscillations, the global 

smoothness given by the number of parameters of the model is guaranteed. A value over this 

amplitude indicates a breakdown of the model, which can be corrected by increasing the number of 

parameters of the model, or by enlarging the deformation sector. This technique provides a flexible 

way to deal with different modelling contexts, and is simple to use once the deformation 

propagation law has been established.  

 

In principle as well as in implementation, the proposed method uses several properties of 

circular Shannon interpolation, which are presented in section 2. The iterative algorithm that 

determines the parameters of a contour model, for a specific class of target contours, is detailed in 

section 3. Section 4 presents the radial deformation technique used to adjust the contours following 

local image information. Finally, in section 5, two application examples of the proposed technique 

are described, in order to obtain the contours of the heart left ventricle models using ultrasound 

images. 

2. CIRCULAR SHANNON INTERPOLATION 

2.1. Shannon Interpolation Kernel for Periodic Functions 

A continuous signal, band limited to B Hz, can be optimally reconstructed from its samples 

using the well–known Shannon interpolation theorem. The reconstruction is error–free when the 

samples are obtained at a frequency greater than 2B. Using a lower sampling frequency, the 

interpolated signal oscillates around the initial signal, passing through the sample points. The lower 

the sampling frequency, the greater the oscillations. A quantitative analysis is difficult, since the 

interpolation kernel is defined for an infinite number of samples. This is not the case for periodic 

signals since both optimal reconstruction and measurement of the sampling error is possible using 

only the samples of one period. In [23], Schanze deduced a finite support Shannon kernel for 

periodic signals. This particular case will be detailed here, considering the polar contour 

development around an internal origin as a periodic continuous signal. 
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Let ρ(θ), with 0≤θ<2π, represent this polar development. The 2π periodic expansion of ρ(θ) is 

a positive and continuous function ρ∞(θ). ρ∞(θ) has a number of M of Fourier coefficients {Cm}. 

Optimal sampling produces N=2×(M−1) samples {ρn} of ρ(θ), which are equiangular distributed 

along the contour, 

 

 {ρn=ρ(n∆θ)} with 0≤n<N and ∆θ=2π/N, (1) 

 

and an infinity of periodic (N) samples ρn
∞ of ρ∞(θ), 

 

 {ρn
∞=ρ∞(n∆θ)} with −∞<n<+∞, so that ρn

∞=ρn modulo N.  (2) 

 

Shannon interpolation with this infinity of samples yields the well–known equation [24]–[25]: 

 

 ( ) ( )∑
+∞

−∞=

∞∞∞ θρ=θρ
n

n N,n,w , (3) 

 

with ( ) 







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




 π−θ=θ∞
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( )⋅
⋅=⋅ sinsinc . (4) 

 

ρ∞(θ) is strictly equal to ρ(θ). The reconstruction requires, for each value of θ, with 0≤θ≤2π, an 

infinite summation of {ρn
∞} weighted by the classical sinc function. 

The reconstruction is reduced to N samples {ρn}, distributed in a period that corresponds to a 

complete rotation of the polar angle, using the Shannon kernel for periodic functions [23]: 
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with ( ) ( )⋅=⋅
tan

1
NF  if N is even,  (7) 
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and ( ) ( )⋅=⋅
sin

1
NF  if N is odd.  (8) 

 

The periodic function Shannon interpolation (5) allows the finite summation of only the N 

samples {ρn} weighted by a new kernel function wN. This new function is 2π–periodic with respect 

to θ, as illustrated in Figure 2 in the particular case where n=0 and N=16. At the limit, when the 

number N of samples is infinite, the kernel functions wN and w∞ becomes equal. When N is finite, 

they are quite close for 0≤θ≤π, but become very different beyond this angular domain. Hence, 

reconstructing an optimally sampled closed contour is particularly simplified with the interpolation 

relation (5). 

 

The study of the under–sampling error is simplified for the kernel given by equation (6). 

However, an analytic expression of the sampling error is still difficult to obtain. In this paper, the 

numerical analysis was carried out using additional hypotheses, detailed in the following 

paragraphs. 

 

When a contour ρN(θ) is under–sampled with K<N equiangular samples, the resulting 

reconstruction ρK(θ) is obtained by circular Shannon interpolation replacing N with K in (6) and 

using ∆θ=2π/K. The ρK(θ) is different from ρN(θ) except the K samples that are the intersection 

points of both contours. The sampling error function is defined using the L1 norm, as 

εK(θ)=|ρN(θ)-ρK(θ)|. We define the maximum relative deformation tolerance as: 

 

 ( )
( )

( )θε=θ
θρ

θε
=ε

θ∆+θ∆∈θε
ε

θ∆+θ∆∈θ K

])1n(,n[

n
maxn

max
K

K

])1n(,n[

n
maxarg,

)(

max
maxKˆ K

K

, with 0≤n<K. (9) 

 

Numerical simulations have shown that the maximum of the error function is often placed at 

the middle of the sample interval. This was verified for a numerical grid of up to 1/25 of the 

sampling interval, with N ∈  [8,128] and reasonable smooth synthetic contour models. With this 

hypothesis, a simplified form of (9) may be used: 

 

 ( ) [ ]( )
[ ]( )θ∆+ρ

θ∆+ε=ε
2

1K
2

1K

n n
nmaxKˆ , with 0≤n<K. (10) 
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To illustrate this formula, the synthetic contour ρ(θ) (Figure 3) is considered. Its polar 

development around origin C is shown in Figure 4. The contour is described with only nine Fourier 

coefficients (1.0, 0.0, 0.25ei2π/3, −0.02, 0.06ei4π/3, 0.02, 0.01, 0.01eiπ/3 and 0.005) so that the optimal 

sampling is obtained with 16 equiangular samples (εC(16)=0). The effect of the under–sampling 

oscillations are outlined for the contours ρ4(θ) and ρ8(θ) in Figure 3 and Figure 4, using thin and 

dashed lines, respectively.  

 

2.2. Fourier Analysis and Shannon Circular Interpolation  

The circular Shannon interpolation function can be computed using the Discrete Fourier 

Transform [DFT]. Equation (3) is the convolution of the discrete contour polar development with 

the cardinal sinus function, i.e. a multiplication with a rectangular window in the frequency domain. 

An optimally sampled contour with N samples is completely characterised by its M complex 

Fourier coefficients {C0,…,CM-1}, M=(N+ξ)/2, where ξ=1 if N is odd and ξ=2 if N is even. These M 

coefficients are directly deduced from the M first values {S0,…,SM-1} of the DFT of the sequence {ρn}, 

0≤n<N, using the relations [26]: 

 

 








−=
ξ

−<≤
=

− 1Mm,
N

S1

1Mm0,
N
S

C
1M

m

m  (11) 

 

where ξ=1 if N is odd and ξ=2 if N is even. 

 

It can be deduced that the real part of the DFT of the sequence of dimension N, defined by 

{S0,2S1,…,2SM-2,2SM-1/ξ,0,…,0} is the ideal sampling {ρn}, 0≤n<N, of the contour. This sampling 

can also be obtained by inverse DFT of the whole sequence {S0,…,SN-1}. Moreover, by padding the 

N values {S0,2S1,…,2SM-2,2SM-1/ξ,0,…,0} with L zero samples, N+L values of the contour 

{ρ(2πn/(N+L)}, 0≤n<N+L are obtained by inverse DFT. Thus, the initial signal samples can be 

reconstructed by circular Shannon interpolation by the inverse DFT of the sequence 

{S0,2S1,…,2S(N/2)-1,2S(N+ξ)/2-1/ξ} padded with as many samples as required. 

 

Consider a continuous contour, optimally sampled with N=2η equiangular samples (η is an 

integer). If this contour is under–sampled by multiplying the sampling step ∆θ=2π/N by two, the 

sampling error can be estimated using equation (10) with DFT twice. A direct DFT on N/2 samples 

will give the sequence {S0,…,SN/2-1}. An inverse DFT on the sequence {S0,2S1,…,2SN/4-1,SN/4} 
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padded with 3N/4−1 zero samples, will give the corresponding sample values for the angles n∆θ, 

0≤n<N. When n is even, these values coincide with the initial contour samples. When n is odd, N/2 

interpolated values are obtained at the middle of the sampling intervals. The maximum of the 

differences between these N/2 values and those of the initial contour at the same angles gives 

therefore an estimation of the sampling error (10). 

 

The DFT algorithms lead to dichotomies, useful for a fast estimate of the number of samples 

for a given target contour. This first estimation may be further refined, using the direct computation 

of the error (10) given by equations (5)–(8), when N or K are not dyadic numbers. 

 

3. FOURIER–SHANNON MODEL FITTING 

In this section, a general technique for deducing the Fourier–Shannon model parameters for 

a given class of the target contours is detailed. The Fourier–Shannon technique models a closed 

continuous contour using a minimum number of parameters. The necessary degree of smoothness, 

expressed in terms of number of Fourier coefficients, is deduced using reference contours. The 

iterative technique detailed here emphasises the signal processing approach. The selection of a 

representative data set, the relevance of the reference contours, and the accuracy of the obtained 

model is application–specific and must be treated with the standard pattern recognition methods 

[26]. 

 

The polar contour development depends on the choice of the polar origin. To estimate the 

polar (central) origin, which gives the minimum number of characteristic samples for a model 

contour, we use the iterative algorithm described in [27]. Once this origin is established, we try to 

deduce the minimum number of characteristic samples needed to fit a reference contour. This 

contour is obtained from a sufficiently accurate data set, with a sufficiently large number of 

characteristic samples.  

 

3.1. Global Model Estimation  

We assume that the modelling error for the reference contour is small enough to be 

neglected. We use an iterative procedure, which starts with a small number of characteristic samples 

and increases this number at each step. A tolerance measure (10) is computed and iterations stop 

when the tolerance is lower than a prescribed threshold εT . At each step, the reference contour is k–

sampled, and the new samples are calculated using DFT twice, as described in section 2.2, or using the 

direct implementation of the interpolation kernel (5)–(8) in section 2.1. The comparison between these 
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k new values and those of the initial contour model at the same angles gives an estimation ( )$εO k  of 

the under–sampling error defined by (10). If ( )$εO k  is greater than the threshold εT , k is increased and 

the procedure is repeated until the current tolerance measure is less than εT . At the last iteration (k=K), 

the contour is approximated with the required accuracy, by the continuous contour deduced by circular 

Shannon interpolation between the K samples.  

 

The threshold εT  depends on the desired degree of accuracy for the specific application. A 

small value of the threshold εT  will produce an accurate model, but the Fourier description will 

include a significant number of coefficients. Generally, the modelling quality is measured subjectively, 

and only an expert is able to establish, experimentally, if the tolerance threshold εT  is small enough for 

the given application. εT  is a relative measure and it must be related to the average radius of detected 

contours. For example, a 1% tolerance may give sub–pixel displacements for an average radius up to 

100 pixels, but for smaller contour radii, a larger tolerance may be a better choice. 

 

The above procedure is used to fit several reference contours, for representative images, and 

gives an initial estimate of the characteristic samples for a specific modelling context. As will be 

detailed in the next section, a breakdown of the model may be allowed during the deformation process, 

if this estimate model conflicts with the detected contour shape frequently. 

 

 3.2. Polar Development Origin  

The study of the sampling quality, as a function of the polar development origin, is 

important in this modelling context. To illustrate this point, the global modelling technique 

described above is used for the synthetic contour of Figure 3. When this contour is developed 

around the internal origin O, which differs from the central origin C, K=25 samples are needed to 

obtain a tolerance ( )$εO K  less than εT =1% (instead of K=15 with origin C). Figure 5 shows that 

with the same number k of samples, the error ( )$εO k , computed in origin O, is always greater than 

the error ( )$εC k , computed using the polar development around the origin C ( $ ( )εO 16 9%= whereas 

0)16(ˆ C =ε ). As described in [27], the central origin corresponds to a zero value for the first Fourier 

coefficient C1. 

It has been numerically verified that the central origin produces smaller under–sampling 

errors for quasi–circular contours. Unfortunately, an analytic proof of this property is not available 

for general contour shapes. The sampling error depends on the numeric values of all the contour 

samples. The minimisation of this error with respect to the polar origin co–ordinates leads to a non–
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linear optimisation problem that can only be solved numerically in the general case. For a circular 

contour, the sampling error varies as a function of the distance ∆ρ between the chosen origin O and 

the central origin C (Appendix A) as: 

 

 ( )
( )

( )[ ]θ∆+
ρ
ρ∆+

θθ∆
ρ
ρ∆+

−=ρ∆ε
∑

−

=

2
1

0

N
1k

0m 0

n
ncos1

)k,m,(wmcos1
1max,k , with 0≤n<k and 0<k≤K. (12) 

 

This first order approximation is true if ∆ρ is well below the radius ρ0 of the circular 

contour. Our numerical simulations showed that this property of the central origin C remains true 

for almost circular contours, and, by extension, for the contours used here.  

 

To take into account the central origin properties described above, the fitting algorithm is 

modified in order to approach the central origin C at each step. The central origin is the centre of 

inertia of the contour samples when the sampling is optimal [19]. Its co–ordinates are found by 

successively re–sampling the continuous contour, choosing at each step the centre of inertia of the 

samples at the previous iteration. 

 

The Fourier–Shannon technique allows the description of a continuous contour model with 

N samples equally distributed around their centre of inertia. Alternately, the description is given in 

the frequency domain, by M=(N+ξ)/2 complex Fourier coefficients1. 

 

4. LOCAL CONTOUR DEFORMATION 

A local contour deformation is frequently encountered in active modelling techniques, which 

use local image information to iteratively adjust the contour shape, and finally obtain an energy–

like function minimum [28]. Our aim is to allow this type of local contour deformation, while 

keeping the global model characteristics. We propose a technique that preserves the initial number 

of parameters of the Fourier–Shannon model, but adjusts their values to consider the deformations. 

Thus, we obtain a deformable model that is coherent with the initial harmonic hypothesis, expressed 

by the number of characteristic samples or, alternately, by the number of Fourier coefficients. 

 

                                                 
1 Except the first one, which is always real, and the last one, which is real when N is even. 
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Global model consistency is an important issue for active contour detection methods. It is 

generally solved using boundary rigidity constraints. There is always a trade–off between elasticity 

and plasticity in an active contour model. Rigidity is usually expressed in additional energy terms, 

which depend on the contour sample displacements. These terms also play an important role in the 

deformation discrete time dynamics. Contour deformation stops when the equilibrium between the 

external (image features) energy and the internal (contour shape) energy is obtained. This can be a 

drawback, when the initial rigidity constraints are not appropriate to the image features map used to 

compute the deformation. 

 

The proposed frequency domain constraints are better able to express scale invariant features 

and a rich variety of geometric shapes with few parameters. The samples of the modelled contour 

are linked by means of a global Fourier transform. The Fourier coefficient space is a heterogeneous 

space, because each Fourier coefficient has a different geometrical significance. Consequently, it is 

possible to define scale–invariant features for the modelled contours, by imposing weak constraints 

on the Fourier coefficients. For example, global elliptic eccentricity may be imposed using the ratio 

between the first two Fourier coefficients. This feature does not depend on the contour dimensions 

or on the ellipse orientation. A complete study of the geometric properties of the FSDP in the 

pattern recognition context will be the subject of a separate report.  

 

In this paper, we treat the simplest case, when the constraint is imposed on the number of 

allowed frequencies of the model. Our primary concern here is to ensure a consistent linkage 

between different processing stages for a complex spatial–temporal model of the heart. To this 

purpose, the Fourier–Shannon model ensures that the modelled contours have the same spectral 

characteristics for all the images in a sequence.  

 

The usual active modelling technique is considerably simplified in the context of global 

modelling constraints, since the external energy term is sufficient to sustain the deformation 

dynamics. This is possible only with a non–local elasticity constraint, as is the case of the Fourier–

Shannon model. The usual elasticity constraints are imposed locally, in a neighbourhood of the 

deforming boundary, and are often used as a deformation regulators [28]–[31]. Slightly different 

elastic constraints may produce significantly different deformations for the same information 

concerning image features. The proposed global model, which is obtained following an analysis of 

reference contours, implicitly induces an elasticity constraint. This is a major advantage when the 

pattern recognition analysis is the primary concern. Our approach gives priority to this point of 

view. Most of the deformation techniques encountered in the active modelling context literature 
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[32]–[35] are sufficiently powerful to deal with predefined elastic constraints. There are many 

possibilities to obtain a deformation dynamic regulation based exclusively on the features extraction 

procedures and on the specific external forces constraints. Consequently, a model–based pre–

defined elasticity constraint may be a better choice in complex detection problems and does not 

affect significantly the convergence of the active detection algorithm.  

 

In the following, a local deformation technique is detailed, in order to integrate the Fourier–

Shannon model in the active modelling context. An external deformation source imposes a radial 

displacement of a modelled contour. To keep the global model characteristics, the neighbouring 

samples included in an angular sector centred on the deformation source have to be displaced. The 

new sampling defines an interpolated contour, which usually oscillates outside the modified sector, 

around the initial contour. We study here how to obtain the weighting window for the samples 

contained in the deformed sector, so that the error between the two contours outside the sector does 

not exceed a maximum value ′εT . This technique allows the deformation of the initial contour 

within several sectors, simultaneously and independently, since the modification introduced within 

a sector does not significantly change the contour shape in the outer angular sector. Several 

approximations must be made in order to simplify the deformation analysis. However, once the 

analysis is performed, the deformation control is reduced to a simple weighting operation. 

 

Using the previous section notations, a modelled contour is expressed by its K polar co–

ordinates (ρn,θn), 0≤n<K, where ρn are the vector radii, and θn are the angles of these radii. The 

radial displacement ∆ρn of one sample, at the angle n∆θ, defines a new contour ρn(θ). The distance 

δn between the contours is obtained using (5) as: 

 

 ( ) ( ) ( )N,n,wN
nnn θ⋅ρ∆=θρ−θρ=δ . (13) 

 

δn depends only on the distance of the displaced sample and on the Shannon interpolation 

kernel. The oscillation amplitudes decrease symmetrically from the diameter (n∆θ), as illustrated in 

Figure 2, for n=0 and N=16. 

 

When two neighbouring samples at angles n∆θ and (n+1)∆θ are symmetrically displaced, 

the contour distance becomes: 

 

 ( ) ( ) ( )N,1n,wN,n,w N
1n

N
n1n,n +θ⋅ρ∆+θ⋅ρ∆=θδ ++ . (14) 
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Outside the sector defined by these two samples, both produced oscillations are in opposite phase, 

and the resulting oscillation amplitude is lower when both samples are displaced by the same 

distance ∆ρ. The interpolation function is consequently maximum, between both displaced samples, 

at the angle θmax=(n+½)∆θ. Figure 6 represents the function δn,n+1 when N=16 and θmax=0. With 

∆ρmax =1, the amplitude of the displacement of both samples is equal to 0.788. The highest 

oscillation amplitude, equal to 0.074∆ρmax, is observed on either side of this maximum, for an 

angular distance of 1.39∆θ. The ratio of the maximum distance between contours, after and before 

adjustment, and the maximum oscillation amplitude is equal to 13.514. 

 

The displacement of three samples can increase the ratio between the central deformation 

and the maximum oscillation amplitude if these oscillations counterbalance each other. The 

displacements of both lateral samples have to be equal. Hence, the ratio between this displacement 

and the central sample displacement has to be determined in order to minimise the maximum 

oscillation amplitude. This optimisation problem has been solved numerically for N=16: both lateral 

samples have to be displaced 2.35 times less than the central sample. This deformation is now 144 

times greater than the maximum oscillation amplitude, detected at the angle 2.219∆θ relative to the 

central radius. The relative measure function ∆3(θ)=δn-1,n,n+1(θ)/∆ρn is plotted in Figure 7. 

 

In the general case of K samples displaced in the deformation sector, the oscillations are 

minimised by a deformation vector [ ]2/K02/K
~,~,,~~

+− ρ∆ρ∆ρ∆=ρ∆ LL , considered as the solution of 

the optimisation problem: 

 

 ( )








θρ∆=θρ∆δ=ρ∆ ∑
−=Ω∈θΩ∈θ

N,i,wmaxminarg),(maxminarg~ N
2/K

2/Ki
i  (15) 

 

where 



 ππ∪







 π−π





 −=Ω ,

N2
K,1

N2
K  is the outer deformation window sector. The deformation 

window symmetry generates the optimisation constraints ∆ρ-i=∆ρ+i, i = 1,…,K/2. The properties of 

the interpolation kernel do not allow an analytic solution of the problem, even for N→∞. The 

problem may be solved numerically. Eleven plots of the oscillation function ( )θρ∆δ ,~  are drawn in 

Figure 8, for angular deformation sectors including L samples. The displaced samples are located on 

these graphs using squares. The relative values of the radial displacements define optimal weighting 

windows that reduce the oscillations outside the deformation sector. 
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Table 1 gives the numerical values of these weighting coefficients. The left column 

indicates the window width, or, alternately, the number L of displaced samples. The next columns 

show the ratio between the central displacement ∆ρ0 and the nth neighbouring displacement ∆ρn. 

Finally, the rightmost column contains the ratio between the central displacement and the maximum 

oscillation amplitude, for the corresponding window width. 

 

All of the numerical values in Table 1 are only slightly modified if N is finite. It has been 

checked that the differences are always less than 5% when N is greater than 16. Thus, the weighting 

windows can be used to control the contour deformation, following a local deformation source. 

Depending on the magnitude of the desired deformation, different window widths can be used. The 

specific modelling technique decides what maximum width L is allowed for a given model, or, 

consequently, when a model breakdown occurs. In this case, a new model may be required, 

expressed with a larger number of parameters. 

 

L ∆ρ1/ρ1 ∆ρ2/ρ2 ∆ρ3/ρ3 ∆ρ4/ρ4 ∆ρ5/ρ5 ∆ρ6/ρ6 ∆ρmax/ρmax 

1 – – – – – – 4.7 

2 0.788 – – – – – 13.5 

3 0.429 – – – – – 144 

4 0.860 0.223 – – – – 440 

5 0.587 0.093 – – – – 3586 

6 0.896 0.358 0.041 – – – 11296 

7 0.662 0.175 0.012 – – – 77705 

8 0.909 0.412 0.069 0.002 – – 88110 

9 0.766 0.333 0.072 0.005 – – 156250 

10 0.937 0.550 0.176 0.025 0.001 – 387600 

11 0.856 0.501 0.170 0.026 0.001 – 727800 

 
Table 1: Numerical values of the weighting functions for N infinite. 

 

5. APPLICATION EXAMPLES 

Fourier–Shannon contour modelling allows the representation of a rich variety of geometric 

shapes. In this paper, we treat only the number of Fourier coefficients, considered as a global 

characteristic of the model. Although irregular–shape contours can be handled using other 

geometric interpolation and modelling techniques, the proposed model is particularly attractive for 
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quasi–circular closed contours, since the number of Fourier coefficients is then drastically 

reduced. Thus, the geometric shape description becomes compact and easy to embed in another 

processing level, for example in a spatio–temporal model. Moreover, the knowledge of the 

frequency characteristics of the modelled contour also ensures the coherence between processing 

stages, from the signal processing point of view. 

 

The Fourier–Shannon model was used to extract the boundary of the heart left ventricle 

(LV) from cardiac ultrasound images. The LV automatic detection procedures are generally based 

on modelling techniques, due to the various uncertainties encountered in the analysis of the 

echocardiographic images. The LV boundaries are not always distinguishable, due to the low image 

quality. This also occurs at the mytral valve level, when physical closed boundaries do not exist, for 

several intervals in the cardiac cycle.  

 

The Fourier–Shannon technique is applied to model reference contours, traced by an expert 

and to data sets obtained with an automatic detection procedure. In the first case, the model uses 

rough data obtained from hand–drawn contours, and the result is a database with reference contours. 

In the second case, the Fourier–Shannon model is applied in conjunction with a discrete geometric 

active model, in order to detect the LV boundaries in sequences of images acquired during several 

cardiac cycles. 

 

5.1. Modelling Hand–Drawn LV Contours  

The LV images were obtained using a trans–thoracic rotating probe with a high acquisition 

rate. The probe rotation movement combined to the heart dynamics produces significant difficulties for 

an expert to trace the LV boundaries. The inter–patient and inter–operator variability obtained after the 

analysis of several sequences of hand–drawn contours was found unacceptably high. In this context, a 

modelling approach was preferred. An interactive modelling software tool was designed to this 

purpose. The global model and the deformation technique were exploited to implement spatio–

temporal coherence criteria, necessary to reduce expert variability [36], [37]. 

 

For the hand–drawn LV contours, initial data pre–processing was performed using standard 

smoothing and interpolation methods. The first processing step transforms the rough data set points 

into a polar development ( , )ρ θn
d

n around their centre of inertia. The polar development set is then 

transformed into a continuous function (Appendix B). After this initial modelling, the expert uses 

exclusively the local deformation technique detailed in section 4. Moreover, in the image sequence, the 

final contour of the previous image is used as an initial contour for the next image.  
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An example of the Fourier–Shannon LV contour modelling is shown on the image sequence 

of Figure 9. Since the shape of the LV is regular, except for some rare pathologic cases, apical LV 

sections contain contours that produce relatively smooth polar developments. The images (a)–(d) in 

Figure 9 are consecutive in a sequence obtained with the acquisition frequency of 42.74 images/s, 

the rotation speed of 8 rad/s and the spatial resolution of 0.02933 mm/pixel. The models are 

obtained from hand–drawn contours using N=64 characteristic samples and a maximum relative 

tolerance εT =0.05. In the first image, an approximating contour of the LV was roughly drawn and 

was modelled with 64 characteristic samples. Then, this contour was deformed by the expert to 

obtain accurate matching with each image information in the sequence.  

 

The deformation technique significantly helped the expert to deal in a coherent manner with 

the spatial and temporal constraints, required for a quality analysis of image sequences. This 

analysis was performed in order to obtain an accurate Fourier–Shannon model fitting for the LV 

boundaries using the cardiology expert knowledge. 

 

5.2. Modelling Automatic Detected LV Contours 

In an automatic detection context, the model can be directly used to follow local image 

features. For an active Fourier–Shannon model, the contour is deformed in successive steps, using the 

weighting window introduced in section 4. Each deformation defines a new contour, which differs 

from the previous one within the sector of deformations, since the error due to the oscillations between 

the two contours outside this sector is reduced to the desired tolerance. A detailed presentation of the 

active Fourier–Shannon model makes the subject of another report. 

 

In this section, a preliminary study of the Fourier–Shannon model in an active detection 

environment is presented. The global model is used in conjunction with a discrete dynamic contour 

model [DDCM], detailed in [38], and adapted for ultrasound images of the heart in [36]. The aim of 

this study is to obtain a Fourier–Shannon evolution guided by local deformation sources. 

 

The DDCM is a simple discrete model (Figure 10) and its dynamic behaviour is driven by 

an explicit equilibrium between internal and external forces. Then, the force fi acting on the ith edge 

of the DDCM is a combination of forces: 

 

 v w+f w+ fw =f ifiint,intiext,exti  (16) 
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wint and wext are positive weighting factors for the internal and external forces fint,i and fext,i, 

respectively. The last term in the right–hand side of equation (16) is a viscosity–like force 

(weighted by wf), introduced to reduce the oscillations induced by the discrete–time dynamics 

around the equilibrium point. 

 

Edge positions are determined, at each instant, by the movement laws: 

 

 

)t  + t ( f 
m
1 = )t  + t ( a

t ) t ( a + ) t ( v = )t  + t ( v 
t ) t ( v + ) t ( p = )t + t ( p

i
i

i

iii

iii

∆∆

∆∆
∆∆

 (17) 

where pi, vi, ai and mi are the position, velocity, acceleration and weight of edge Vi, respectively. 

The model dynamics is controlled by the time interval ∆t and by the mi coefficients. We consider 

here that each edge has the same contribution to the contour deformation. Consequently, the mi 

coefficients may be neglected. 

 

The internal forces are computed using a minimal local elasticity constrain defined by: 

 

 1i1iii1i1iiiint, r̂c
2
1  r̂c +r̂c

2
1 = r̂f ++−− ⋅−⋅⋅−⋅  (18) 

 

where ri is the local normal vector given by the discrete local curvature ci. 

 

The external force represents the energy of image features, and drives the deformation of the 

model. We use here the image gray level for simplicity of presentation, along two radial segments 

associated to each edge Vi (Figure 11). The image features are the average grey level obtained for 

these segments. The external force amplitude is proportional to the difference between the average 

grey levels and its direction is given by the sign of this difference: 

 

 iexicoiext fff ,,, +=  

 ∑
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Depending on the discrete curvature at each edge, the inward direction segment will 

produce a compression of the contour and the outward segment will produce an expansion of the 

contour (Figure 11). More elaborate image features and faster DDCM dynamics are described in 

[36]. 

 

Both internal and external forces act exclusively along the radial direction [36], [38]. The 

DDCM edges moves simultaneously following (16). After several iterations of the DDCM 

deformation algorithm, the edge set is globally modeled using the Fourier–Shannon technique 

described in section 3, with a given tolerance threshold. This method allows the study of the 

adequacy of the model for simultaneous local deformation sources. The overall contour evolution 

gives accurate information about the fitting capabilities of the Fourier–Shannon model in an active 

modelling environment. An example of the above technique is presented in Figure 12. 

 

The initial shape of the DDCM model is a circle with the radius of 30 pixels. The force 

parameters are wint =1, wext=0.001, wf = 0.005. The external force fext is computed at each step using 

two 10–pixel width segments along the radial direction associated to the edge, following (18). The 

successive models obtained in Figure 12 (b)–(d) using N=64 characteristic samples and a maximum 

relative tolerance εT =0.01 show a good agreement between the active and the Fourier–Shannon 

modelling techniques. 

 

Both the above applications of the Fourier–Shannon model were integrated in a complex 

method, which proposes a spatio–temporal harmonic model for the restitution of the LV movement 

and deformations [36]. At certain stages, this method needs the expert–type information and uses a 

hand–drawn contour, modelled and adjusted as in section 3.1. This information is automatically 

distributed, following image sequence information, in the spatio–temporal modelling space, using 

the technique presented in section 5.1. The obtained contours are used as initial data for 3D and 4D 

restitution algorithms, also based on the Fourier coefficients characterisation.  

 

In this context, the link between different processing stages becomes essential for overall 

system efficiency. The harmonic description of the 2D contours is the key mechanism that ensures 

the spatio–temporal coherence, required by the LV dynamics. Moreover, the specific relation 

between the heart movement and the acquisition probe movement / frequency produces explicit 

upper frequency bounds that must be considered in any accurate LV model. From this point of 

view, the Fourier–Shannon approach gives a direct solution, which guarantees that the obtained 

spatial and temporal model is error–free. 
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6. CONCLUSION 

The approach described in this paper establishes the basis of the harmonic modelling of 

continuous contours. The Fourier–Shannon modelling technique proposes algorithms for 

determining the number of parameters needed for an accurate description of a continuous reference 

contour, and a local deformation technique designed for active modelling contexts. The model has 

several advantages, related mainly to the compact contour representation and to its intrinsic global 

modelling capabilities. It may be used in both static and active modelling environments, providing a 

solution for embedding a priori knowledge about the specific pattern recognition problem, like 

desired spatial accuracy and upper spatial and temporal frequency bounds. Moreover, this 

modelling technique allows complex geometric shape representation. The model is also well 

adapted for complex processing chains, where its dual continuous–discrete representation offers a 

flexible way of transferring information between system components. It is ideally suited for multi–

scale / multi–resolution analyses. 

 

The proposed methods were applied to obtain the contours of the left ventricle of the heart, 

from a sequence of ultrasound images. This is part of a project aimed at modelling the spatial and 

temporal deformations of the left ventricle using few cardiac cycles. The results presented here are 

used as a basis for the development of a complex LV tracking system, using both local image 

information and decision systems based on expert knowledge. 
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APPENDIX A 

This appendix details the sampling error estimate computation, in the case of a circular contour. 

If a circular contour of radius ρ0 is developed around an origin O very close to its centre C 

( 0OC ρ<<ρ∆= ), a limited development around 0
0

=
ρ
ρ∆  can be considered: 

 ( ) ( ) ( ) 







+θ

ρ
ρ∆−θ

ρ
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2

0
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2
cos1 . (20) 
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This second order approximated formula is used to calculate the sampling error defined by 

(9). Thus, it leads to: 
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which yields equation (11): 
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APPENDIX B 

The method used to obtain a smooth continuous contour starting from a rough data set is 

detailed in this appendix. We suppose that the samples of an original contour are irregularly spaced. 

The initial data points collection ( , )ρ θn
d

n  is first transformed into a discrete function )( nn θρ using the 

extension to the discrete case of a moving least squares smoothing method, introduced by Papoulis 

in [39]. This technique uses a moving angular window of variable width ∆θn. The window is 

determined for each angular position n minimising the RMS error between the corresponding data 

samples. The ∆θn expression in the continuous case is: 

 
5
2

n

B
n 35.1 








ρ ′′
σ=θ∆ , (22) 

where ′′ρn  is the second derivative of ρ(θ) evaluated for the central angle of the window θn. In this 

discrete case, ′′ρn  is estimated by the second derivative $ ′′ρn  of the parabola that provides a least 

squares approximation of the samples. σB is estimated by the RMS deviation between these samples 

and the interpolation parabola $σB . In practice, both these estimations are computed using a window 

of any initial width (40 % of the initial number of samples in our case). Then, an iterative algorithm 

is applied to find simultaneously $σB , $ ′′ρn  and ∆θn. Finally, an interpolation using cubic splines [40] 

[41] is performed between these samples and a continuous contour )(θρ is obtained. This contour 

can then be regularly sampled at a desired angular frequency. 
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Figure 1: Four–cavity apical ultrasound image of the heart. 
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Figure 2: Shannon interpolation kernel for periodic functions wN(θθθθ) for the case n=0 and N=16. 
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Figure 3: Synthetic contour ρρρρ(θθθθ) and the contours ρρρρ4(θθθθ) and ρρρρ8(θθθθ) obtained by under–sampling ρρρρ(θθθθ) function (with 

respectively 4 and 8 samples). 
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Figure 4: Polar development of the contours ρρρρ(θθθθ), ρρρρ4(θθθθ) and ρρρρ8(θθθθ). 
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Figure 5: Variations of the estimation $( )εεεε k  of the sampling error with respect to the number of samples K for the 

synthetic contour of Figure 3, sampled from origins O and C (Central origin). 
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Figure 8: Oscillation functions ( )L,,~ θρ∆δ . 
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Figure 9: Four LV hand–drawn contour modeling. 
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Figure 10: Discrete Dynamic Contour Model. (a) Movement law of the contour edges (pi position, di distance, vi 

velocity and ai acceleration). (b) Local co–ordinate system for a DDCM edge (ri is the local normal vector given by 

the discrete local curvature ci , and ti is the local tangent vector at edge Vi). 
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Figure 11: Compression and expansion segments and the associated external forces. 
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Figure 12: Fourier–Shannon modelling of the DDCM edge set during active deformation. i denotes the number of 

iterations ( t = i ∆∆∆∆t in (17) ). 
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